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ABSTRACT

The modified hypernetted chain theory (MHNC) for density profiles
of fluids in contact with a hard, smooth surface is found to posess a
remarkably simple and interesting property: The accuracy of the MHNC and
the wuniversality of the bridge functions for the density profiles can
be tested without resort to any detailed solution of the integral
equations.It is given by the degree of universality of the bulk bridge
parameter (e.g. ) for the Percus-Yevick hard-sphere bridge function)
when expressed in terms of the second partial derivative of the free

energy with respect to the density

F =-p'/2 Y £ ,T)/ dp |

g/ % i

The function n (F) as obtained from MHNC calculations for bulk
simple fluids is found to be remarkably independent of the pair
potential .As an example for the accuracy of the resulting method, the

one component plasma near a hard wall is discussed.
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The pair correlation functions and the equation of state of bulk
are given with a high degree of accuracy by the MHNC,which is based on
the universality of the short ranged part of the bridge functions [1].
However, a similarly accurate theory for the inhmogeneous fluid is not
yet available.In particular this is the case of the interface of a ionic
solution near a charged,smooth hard wall [2].This is a simple,highly
idealized model of the interface of a ionic fluid and a charged solid
but it has been extensively used in electrochemistry [3].Recently,as
part of an extensive study of the one component plasma (OCP) (4], the
interfacial properties of the OCP and hard surfaces [5-8] were studied.

The comparison between the accuracy of the same approximation in
the bulk or at the interface shows that in general,a good approximation
for the bulk phase is not as succesful for the interface.For example,
the HNC is an excellent theory for the bulk electrolytes and OCP [1,4]
However it is a much poorer theory for the charged interface.The reason
is that it underestimates the density oscillations caused by the
excluded volume effects.The error produced by this underestimation is
much more serious for the flat interface case.The inclusion of bridge
diagrams corrects in part this defficiency, and should yield a much more
accurate theory for the interface.

As a first step in the systematic improvement of the flat wall HNC
similar to what has been done in the bulk case [1], the
present paper provides a proof of the universality of the short ranged
part of the bridge functions for the density profiles near a flat,
smooth interface.The analysis of the MHNC scheme,and the availability of

MHNC results for the bulk OCP enables us to establish this result

without having to particularize to any specific density profile in
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detail.For the restricted (dielectric continuum) primitive model of
ionic solutions a similar analysis is also possible.

A fluid in contact with an impenetrable wall can be considered [9]
as a limiting case of a mixture in which one of the components (which we
label w) grows in size but dwindles in concentration, so that the
properties of the bulk phase of the fluid remain unchanged.LlLet R“rbe the
hard core radius of the w particle (the "wall"), with density'f;;Then

the limit 1is [9,10]

ﬁ¢’>0 ; Rw->oo and ﬁwgi->0.

We use the Ornstein Zernike (0Z) equation as our starting point.We
show that in the planar limit the bridge functions of the MHNC
approximation can be determined from a universal function.The criterion
to determine the parameters of this function are given in section II.
The remarkable (but perhaps not unexpected) fact is that nearly all the
bridge function parameters are already determined by the solution of the
bulk MHNC equations.The only free parameter turns out to be a shift
parameter,‘A ,which determines the position of the wall in the reference
system relative to that of the system under consideration. This special
property of the bridge functions,when analyzed in the context of the sum
rules for the density profiles (discussed in section III), leads to a
remarkably simple and interesting result :The accuracy of the MHNC
theory and the universality of the bridge functions for the density
profiles,can be tested without having to solve the equations.It is given
by the degree of universality ( i.e. the independence of the pair
potential) of the bulk bridge parameters (for example, ) of the
Percus-Yevick hard sphere functions), when expressed in terms of the

second partial derivative of the excess free energy with respect to -
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This test is periormed in section [V,where the universality is shown o
be very accurate.(see figure 1).As an example of the resulting method
and its accuracy we consider in section V the density profile of the OCP
near a flat wall.The Percus Yevick hard sphere bridge functions for the
density profiles are briefly discussed in section VI while some
implications of the present work are mentioned in the concluding section

VII.
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’ I1-Ornstein-Zernike Equation and MHNC Closures in the Planar Limit
)

B}

:::: Consider a mixture of particles labelled 1,2,..m,w ,with total
2 1%

o density
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: temperature i=(k T) ,and mole fractions x.=N /N  x -N_,_/N.In the limit
\ 1 B . [Y w
L)
::: x -~>0 the 0Z equation decouples into two parts [9]:the bulk part
w
Pl g »
% wm
“ hc;(E)‘c;s(E) +PZX‘I dr'h (Jz-x |)c91_(£ ) (2.1
>,
-, and the wall part &=
.I
| ™
N A}
h (r)= + dr'h -r' ! .2
& L=, (D) +p X,j h Az Deg(rh) (2.2)
::: where h_(r) is the tqo‘ﬁal correlation function, and ¢ (r) is the direct
“-. .) -~ \) -~
correlation function for the bulk fluid. h‘.(r) and cw_(r) are the
. pl . Ll . ~
':: correlations involving the w particle.Consider now the planar limit: let
-
[\~
e r-Rv’+x (eventually R"_->oo) and denote
Ko
B
; hw;<r) »h (1)
u r - r
" cvs ) e (1)
Then [9]
§'.
o0
:si w o0
é’ h;(x)-c i(x) +s) ng2r|' dt hz(t)/ds sc‘u(s) (2.2")
. s ~od fx-t\
3
-: where we are implicitly using hard core exclusion conditions for the
wall
% g .(x)=h.(x) +1=0, x<R | (2.3)
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where R:is che radius of the hard core or i.

The fluid now occupies the right half space,x>0,and Pxigi(x) gives
the probability of finding the center of particle i at a distance x from
the surface of the wall. The function gi(x) represents, therefore, the
density profile.When the wall is charged and the system has ions, then
(2.2') has to be modified to avoid divergencies produced by the Coulomb

potential [11]

o o0
$R
]ds scf(s) ~ |ds scajs)+ KQ.Qélx-t|+x+t) (2.2")
13-ty [x-t|
where
|
sR &
SCQ;(S) = sciu(s)-f- Q;Ql/s (2.4 )

The charged system must satisfy the bulk electroneutrality

condition
(72 )

Q. %,Q;=0 (2.5)

and the wall electroneutrality condition

=
PZ‘x;Q;de g, (x) = -E,/4TT (2.6)
i,

where E is the electric field at the surface of the wall.
The exact diagrammatic expansion of the fluid pair correlation

functions supplements the OZ equation with the closures {1,4]

s
NYs log (1+h (r))=-[R¢, (r)+B; (r)]+[h;(r)-c, (r)]
nex 4 4 3 ) 0
NN i,9=1...m,w (2.7)
)
pS -
s where $.(r) are the pair interaction potentials, and the bridge
Y)
functions B.(r) are given in terms of diagrams containig h.(r) bonds.
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The hvpernetted chain approximation dNC is obtained by setting Bq\r)=u.
Note also that (2.7) is an HNC for the effective potential
?cfr)+B‘§r)/ﬁ.Presently, the MHNC is the most accurate theory available
for the pair correlation functions of the fluld[1l,12-16].The MHNC scheme
is based on the short range universality of the bridge functions:In
practice, one considers a reference system (guperscript 'o’') of hard
spheres of radii RZ,R;, with the same relative concentrations x“x",
temperature R and density F as the original system.The basic MHNC
approximation is

MuNC
Bx(r) =B (r R®, ,%:,R;) ) (2.8)
where the reference hard core radii R:,R;'are adjustable parameters to
be determined by imposing consistency criteria.In particular, the
following MHNC ‘virial-energy’ consistency requirement can be imposed

locally [13-16] (without having to consider different temperatures or

densities)as a set of m+l equations for the m+l unknown radii R°(R,0):

2 X, x-[dr [ g (r) -g2(x)] 3B,(r)/dR: =0
. v ) had "-— ‘S-u ) “

R o™, k=1,..m,w (2.9)

The HNC,with B.. =0, is the member of the lowest order of this class of
|9
)

approximations satisfying 'virial-energy’consistency (13,14,17].

Detailed results [1,12-16,18-21] show that the MHNC reproduces the
computer simulation results for a large variety of fluids within the
statistical error of the simulations.The results for multicomponent
classical plasmas are nearly as accurate [12],while somewhat less
accurate results are obtained for electroytes and molten salts [20).

In any event, the MHNC results in a significant improvement of the HNC

theory.The accuracy of the local MHNC theory based on the universality
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perturbation theory for the equation of state, were recently studied in
detail [13-14j.
The interesting feature of the planar limit is that the closures

(2.7) decouple from the bulk part in the same way as the O0Z equation:

log (1+h_s(r))=-[&¢.,(r)+3_)_(r)]+[h__(r)-c.s(r)]
(Y ) . 3 8
i,j=1...m (2.10)

and for the wall part

log (1+h{(x))=-[B§, (x)+B . (x)]+[h (x)-c{(x)]
i=1l...m (2.11)
v _> . .
where ?ﬁ(r)-—)#i(x) ,ch(r) B: (%)

When employing the MHNC scheme for the bulk part,eqs. (2.8,9)
remain unchanged, except that the w component is not taken into
account.In other words,we get the usual MHNC bridge functions for the
bulk phase with the m bridge parameters RZ (K,P).Taking the planar limit
in the reference system (using now r=R’_ +z=R_+)+x), we obtain the

reference bridge functions

gzgr)-;gi(z) =g€(x+),R: (&’f)""'R;\(&'P))
B;Sr)->%°(z) -BZ(xf},R: (B,P),....R;.(B,?)) (2.12)

so that the (m+l)th equation in (2.9) becomes

wA
? xt.[dx g, () -g:(x+})] 3B (x4X) /3% =0
. i=1,..m (2.13)

PR

from which we find the remaining bridge parameter (the shift parameter)




~u i

N g - -
P > Y _V V)

9

e r

PR
T

}- lim (R°-R°)
W N
R ,R° =00
w W
(2.14)

In other words, the bulk part of the MHNC scheme determines all the
radii R°® (B'f) and the planar reference functions gZ(z) and B:(z). The
only remaining free parameter of the MHNC is the shift ), which should
be the same for all components of the mixture.This special feature has
significant consequences to be discussed below.

Finally, it should be noted that although it is presently
impossible to calculate ,the non-additive diameter case gives more

flexibility to the scheme.In that case, instead of (2.13), we get the

system of equations for the m shift parameters ) .
-

Jax (g 00 -8y 01 8By 2/3) =0

i=1,..m (2.15)
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I[II-MHNC Equacions for the Density Profiles and Bridge Functions:Sum

Rules

Combining (2.2") and (2.11) we arrive at the following equations

for the density profiles:

wA C =4 ot
sR sk
log[1+ h-(x)]= fZXLzﬁ dt b (e){ds  sc,(s) -BQY (x) - & 4,(x)
€= kad |x-t]
- bL(x) ,XZR;
(3.1)

[1+ hi(x)]-O, x<R;

where q(x) is the electrostatic potential in the half space x>0

o>
H(x)-&ﬁfﬁt (x~t)Z‘x&the(t) (3.2)
> )

which satisfies the boundary conditions

dy/dx | =-E, ;¥ (x>00)=0 (3.3)
*

%o

s
Q.(x) is the non-electrostatic ,non-hard core part of the interaction
4

R

] between particle i and the wall.Eqs (3.1-3) also apply to the situation
L
13 when the system is immersed in a uniform neutralizing background of
)
R
> charge density Po ! It this case, however, (2.5 ) and (2.6) have to be

: modified
2 X Q =- (3.4)

- fz fb
g Py
< PZx;Q‘.de ho(x) = -Eg/4TT (3.5)

W', (=2
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3 When the bridge functions of a reference system are employed, then using

the property

[]

bBi(xf) )/ 8\ -be(x+A ) /dx%

- of el

-

we arrive at the following condition for the shift parameter ):

Ed

st Na iy,

v
Z x‘fdx [ g.(x) -83(x+) )] I (x#p )dx =0

iz, i=1,..m (3.6 )
R
1Yy
\
l
-, It should be noted that the HNC approximation for the density
: profiles (i.e. B;(x)-O without any additional statement about the bulk
Q' Bifr)'s) is obtained also from Wertheim’s equation [22] : For a one
I
component system
R
e kf 9 log p(g) --V'vut(’r_) +kT ﬁg‘c(g,g) V‘_[f(g')-pl (3.7)
o
»
L
under the assumption
N ?
8
)
s c(e,r’)=c (|g-r']|) (3.8)
"A - Bulh
1
D Employing the method of Carnie et al {23], we derive from (3.1) and
i
)
! (3.5) the following sum rule
I ™
b Z x g (R) +B (Zx Q) §(x-0)- RE. o /8TTp +1/201+830/0p) 1 |
'
) ‘e w ey
- él J&x g (x) B B* (x)/bx +2[x (Ax g (x) 9B. (x)/bx (3.9)
. L4
y | \t.
D)
q SRS ~ . PRSP, FO A e T S
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B
.4.('
,,:,'5:
\'. ’
! If the exact bulk direct correlation functions (dcf) and the exact
f', bridge functions B:(x) are employed, then eq.(3.9) is exact.It should
W
'3 be compared to the following exact relation that does not involve the
Wt

KL bridge functions explicitly [2,24,25]

w v

3% 8, < 2 P
b L X8R +8 () x,0)) Yx=0)= 85 /8[Tp +8(B/p) 5,0

3 ‘\ \- L‘:u

N\
o s
W Z. fdx g, (x) B dp.(x)/dx
"J" L=z,

¥ gt
""«it .
-'r::a (3.10)
gy
~'- comparing these equations we find the following bridge function sum rule
A
\_,: for the density profile

\'.'
'\)‘

. wn

v
) ? : : - .

| x.fdx g, (x) B, (x) /3% IS(P/P)”“‘ l/2[l+ﬁ(3P/°P)T] Bulk

.:\::_: R (3.11)

‘~:::‘:f When approximate bridge functions e.g B°L(x) and /or approximate
/-,,*:‘
Tht bulk dcf (¢ (r)) are used, therkq. (3.9) is still valid provided that
the bulk inverse compressibility

g
' 8(3P/3

:'(B (0R/3p)
0
:$ is taken from the compressibility equation of state which corresponds to
%
_ :% the bulk dcf’s that are employed.When BL(x)-O then we recover the more
J‘C'

-0y familiar HNC sum rule [23].In the case of the mean spherical
" approximation (MSA) the closure for the dcf is
L
ho
-?§u
Ny
: ¢ (x) =- ¢.(x) , xFR; (3.12)
L. ts for which we obtain from (2.11)
R
\- 14
he

o
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g :(x) 3B -(x)/0x| =g (x)dg (x)/Ix -dg (x)/dx (3.13)
% \ ™

SA

» ‘.
?‘-
b
38

‘-

-
-

and from (3.9)
wA

™ r
1/2 ing’z(gg) +R (J%,Q)) {(x=0)= RE,/8TTp +1/2(8(3P/3p) |

[

- SR
+Zx;fdx gc(x) R a*i(x)/éx

Bulk

LAY

(3.14)

Despite the extensive work on the MSA for density profiles
(2,11,26], this general MSA,sum rule has not, to our knowledge been
published in the literature.This MSA sum rule, as well as the general
sum rule (3.9), are very useful in understanding the results of the

different approximations.

Returning to the MHNC approximation with the hard sphere reference

bridge functions B (x+)\), we write, from (3.6)

od

Z x‘.J‘dx g.(x) dBI(x+))/dx -Z‘x‘jdx g:(x) BBE(X)/bx
l:‘:l i:. °

w M
-Z x‘.fdx gz(x) BB:-'(x)/bx
P 1~

(3.15)

Using (3.11) applied to the reference system, and also (3.9), we

obtain the following MHNC result for the density profiles:
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j:: +Lx;fdx gL-(x) 9 3;; (x)/dx% +1/2[1+B(6P/bf>%_ ]:\‘;.L:c +[K(P/f))]\z~\.n

i._ e

-.‘.' WA ?‘

' -1/2(1+R(3B/3p) 1° - )x.[dx g°(x) B 3B (x)/d

L/2018@R/pY 1L - ) fax gioo & 983 (0)/3x

g . )
e (3.16)
.,
=
B where , for all practical purposes we may ignore the last term (i.e.)«<R
- of the right hand side (27]}.

o
"‘:r. Comparing (3.16) with (3.9) and (3.10), we find that in all

)
:J
W cases when the bulk dcf’'s and equation of state are given correctly by
3

:‘_‘; the MHNC (as it is the case for simple, one component fluids),a criteria
K
o, for the performance of the accuracy of the MHNC for the density profile
n
oy of the inhomogeneous case is provided by the validity of the following
:: bulk relation (the ’bridge sum rule’)
SO

- [B(P/P)]-1/2[1+B(3P/59)T] - (B(P/p)]°- 1/2[1+3(5P/39)T]
,
}:. (3.17)
k)
' ey
W Denoting by f(P,T)-BE /N the excess free energy per particle

,':: then we may re-write (3.17) as
&

o 2 2

< 2, 2 L. 2

-0°/2 3 £(9,T)/d | =-p~/2 3 £°(p,T)/3

- f/ (p )/9I1_S>/ P /fl_r
v (3.18)
r‘:
d‘.-

. Thus, an optimized MHNC map (i.e.R’(B,f)) of the system on the
{
Ny reference system, such that the optimized bridge parameters obtained
0
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from (2.9) reproduce accurately the structure functions of the svstem,
will perform as well for the density profiles, provided that the
optimized reference bulk system and the given bulk system have the same
second partial density derivatives.This result is an unexpected type of

correlation between the bulk bridge parameters.
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o
AN IV-Test of the Bridge sum Rule:lniversality of the wWall-Particle Bridge
‘%& . Functions
=
{i} For bulk fluids in three dimensions the exact bridge functions are
::é not known:However the universality hypothesis can be tested very
:;; effectively:The bridge functions obtained from the Percus-Yevick theory
oy for hard spheres reproduces the structural correlation functions
L
‘tg obtained by computer simulation of a large variety of cases, with quite
.:j disparate interaction potentials, from hard spheres to charged plasmas
o (1,12-21)].The corresponding MHNC calculations employ the PY-hard sphere
éa bridge functions with a single parameter ) (which is the hard sphere
T‘ packing fraction in the PY approximation).As a result, we have available
:;i the values of 0 (Q,T) for the set of potentials for which detailed MHNC
:%E calculations have been performed.These include the hard spheres,

;‘j Lennard-Jones (LJ 12-6) ,EJx,r-L and r-zthe OCP) potentials[1,6,18,19].
'.2 As already discussed in detail elsewhere [13] when the bridge parameter
%} is expresed in terms of the entropy S--S‘;Nk , then 9(5) forms a

‘é universal line, independent of the potential (fig 1 of ref. 13).This

r; represents a graphic demonstration of the accuracy of the variational
,é; thermodynamic perturbation theory.The result (3.17) has not been

AN

Lo, anticipated.

s The test of the validity of (3.17) and of the universality of the ?
jﬂ bridge functions for the density profiles can be performed together by |
Y examining the universality of the bulk bridge parameter n ,when
;; : expressed in terms of
:?

N
N F=-(R(P/p)]-1/2(1+R(3P/3p) ]
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L b
- P"/z d £(p,T)/9p (=.1)

for different potentials. It is to be emphasized that this broad
interpretation of the universality n_(F) requires only that a set of
bridge functions from which this relation is obtained does accurately
reproduce the bulk pair correlation functions.In figure 1 we plot the
results for n (F) for different potentials in the entire fluid range,
nc<0.45.Indeed, the universality is satisfied to a ramarkable degree.
Better, in fact than that of n(S).The hard sphere line in figure 1 is
actually obtained from simple analytic expressions. For hard
spheres,using the packing fraction g-ﬂ’/6 Pds (where d is the hard
sphere diameter), we use the Carnahan-Starling equation of state [29] to

get

2
F -(58"-2§ 1/11- 4.
nard soheres [ S 171 S ] (4.2)
This expression provides also an excellent fit for the MHNC
calculations of Tsai [18],who obtained the representatior{for the

parameter n

T 3
n- (0.982913-0.022713 +0.02A493 ) (4.3)
The universal behaviour of Rr(S) and r\SF) for simple one component
fluids suggests a new interesting possibility to correlate the bulk

properties of simple classical fluids using a relation of the type

S(F)= universal function (4.4)
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_‘;_‘: V-An Example:The one Component Plasma in Contact with an Impenetrable
HOSY Wall

o Monte Carlo (MC) simulations of the surface properties of the OCP
L=

{1‘: were performed by Badiali et al [5].These authors present the results
~-_'1'.\

7": for an near an impenetrable hard wall for five values of the plasma
. coupling parameter
o 2 '3

<. - - -
o N-8Q /a,~1,10,20,30,70 a_. [3/41";’9 ]

'.p.".
w In addition to the MC result they also present results for the HNC
B~ closure for the density profile using the MC results for the bulk dcf,
b'}:.'

V’b and results for the MSA for the density profile [26] using the soft MSA
)
K-~ (30,17] bulk dcf’'s.We will refer to those results as MC/MC,HNC/MC and
LA

e MSA/SMSA.

)-)‘::.‘j SR

Sty For the case at hand, * (x)-O,Eo-O,R-O, and in the notations of ref
[5], RQU(0)=-Bzesy .Denoting

o s Y= Bzes§ -g(0) in general and &Y= Rzesy -g?'(O)/Z for the
.r_: .
-“‘_ MSA,we obtain the following results for the different theories

::::I

J ‘
A o ¥ -1/2[1+B(6P/69)1.]b“‘ for HNC/MC

Cn e Me

LS

-
'._'~l oy '1/2[1"3(”/6?)1-]-..“ for MSA/SMSA

SMSA

o
sy l/2[l+f§(0P/é)P)T ]‘v“ for HNC/HNC
'v:h'r L1 3
R
S o § =R(P/0) ] wyiu for  MC/MC

s Mo

e
T
’.-
' oY =B(P/p) 1 ,\u -(F-F*) for MHNC/MHNC

. MU ¢
P> (5.1)
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n

,('\ Recall, that, essentially, MHNC,/MHNC«MHNC,/MC and that the OCP results
:\\_ give i (IM=1)~0.1,n_(I"=70)~0.38 (see fig.l in ref 6}Using fig.1l with
\:Q O F=F-F° given in relation to the hard sphere line we find

...-::, for 7=1 , 10 , 20 , 30 , 10

E:E:E we findgF =0 , 0.20, 0.25 , 0.15 , -0.25 respectively.Recall also
:‘" that for the bulk,HNC-MC for I'=1, while [17,31], HNC~SMSA for 1"210.

r '4:\ The reults of the different theories for o4 § are given in table 1.Note
.‘fhs the high accuracy obtained by the MHNC/MHNC when compared to the MC/MC.
\:2 Note also that without succeeding to reproduce the pronounced structures
AL of the MC/MC density profiles,all the theories of the type X/HNC or

E:':;_» X/SMSA with X=HNC or MSA will give, for large plasma parameter I" , much
::::: better results for the total potential drop « § than the corresponding
_. X/MC.This is a negative feedback artifact of the thermodynamic

:":: inconsistency of the HNC and SMSA results for the bulk OCP, by which
.r:: they give

»-_::‘ 1/28 (dP/df’)r_ 0.3 Twich happens to agree with B (P/p) ~ 0.3 T
E:% This situation is very sin.lilar to what happens in the bulk OCP where
il both the HNC and the SMSA give very good results for the potential

,' energy despite (@oli) the fact that the corresponding pair correlation
::._ functions are far from reproducing the MC results. The MHNC/MHNC results
T

"4 satisfy a stringent moment test, i.e.(3.6) which as in the bulk case

also assures the validityof theey (<> potential energy) test in table

rt 1.
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VI-Construction of the Bridge Functions for the Density Profiles

Despite the fact that we have used the Py hard sphere
representation for the bulk bridge functions in constructing the MHNC
scheme for the inhomogeneous problem,the universality criteria for the
bridge functions for the density profiles in the inhomogeneous fluid and
eq. (3.17) are valid in all cases. The universality of n(F) tells us
that there is a similarly universal representation of the bridge
functions for the density profiles, but it does not necessarily imply
that it can be obtained from the PY hard sphere density profiles.Yet,
the general behaviour of the universal bridge functions for the density
profiles in the range 2>0 is similar to that of the bulk fluid and may

be inferred from the solution of the PY equation for hard spheres near a

ii wall, which is, quite naturally, a good starting point.

R The solution of the PY equation for a one component hard sphere
g: system of bulk packing fraction n, near a hard wall yields [9]

'

(

2 &
-(1+2n) /(1-n)  for z<-1/2

* . 2 2z 5 Y
c(z)= < [-(l+2nQ +6q51+q/2)(1+2q)(z+1/2) -2n(1+2n) (z+3/4) 1/(1-n)

for -1/2<z<1/2

i 0 for z>1/2

1 (6.1)

where z is is the distance to the wall and the hard core diameter d=2R

1
{
I
\
|
1
i

is the unit of length.g(z) can be calculated from the planar 0Z as
described in [9]. By a method similar to that of the bulk case [1],the

bridge functions for the density profiles are given by

‘ﬁ*\-’\’q) -y w g
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kﬁ- -c(z)-1-Inl-c(z)} - ,2<1/2
RS
t:.s
N
v B (2=
< g(z)-1-1n[g(2)] ,2>1/2
L =
A (6.2)
N \
N ..
u
~
¢ These functions are continuous,since as it is well known
o
) Z
¢ c(l/2)=-g(1/2)=-(1+2nY /(1-y) (6.3)
b :._
L in agreement with (3.14) for hard spheres
i
2
o 2
o 1/2 g <1/2>-1/2B<JP/69)|T =-1/2c(0) | (6.4)
P
N The density profiles exhibit more pronounced structure than the
;\ bulk pair correlation functions,but the general shape of %N (z) for 220,
-~ "o
“: is very similar to that of the bulk B (r) for r>0.Note however, that
X puns
- negative values of g(z) occur for n>0.45, while negative values for the
y% bulk g(r) occur only for n>0.63 .Bulk MHNC calculations, as well as the
‘$‘ variational perturbation theory map the fluid range of simple fluids
-
o] onto [13] n!?,T)<.h5, with q‘?,T)~O.AS serving as a Lindemann type
L freezing rule. The singularity of the functions (6.2), associated with
Be
;b‘ negative or zero values of g(z),which limits their range to n<0.45, may
-
} be more than accidental.Notwithstanding this speculative interpretation,
hﬁ one should be cautious in applying the bridge functions (6.2) for a
»
£
,2 fluid near its bulk freezing point.The overall general features
g}
? regarding the application of the MHNC scheme to density profiles are
" similar to the bulk case.Accurate simulation data, when compared to MHNC
4
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VII-Conclusions

In this paper,devoted to the analysis of the density profile

LSS S W

problem as the ‘planar’ limit of a bulk mixture in which one of the bulk
particles increases in size to become the planar wall,we provided strong

evidence for the universality of the bridge functions for the density

A il ol N

. profiles. Although we still have room for improvement of the parametric
representation of the bridge functions, the resulting MHNC theory is
likely to be as accurate as in the bulk case.A program for computing

density profiles by means of the MHNC scheme is currently underway.

An attempt to implement the universality of the bridge functions
for bulk uniform systems to the treatment of nonuniform fluids has |
g already been made with considerable success [32].From the present
analysis, it seems however that fruitful information, leading to a
' systematic improvement of the theory of nonumiform fluids, may be
s obtained by comparing the MHNC results for the density profiles to those
g obtained using the weighted density functional formalism [33].
Final test of the accuracy of this theory will be achieved by
comparison to computer simulations.We hope to perform such a study in

the future.
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Table 1 :Densitv profile sum rule for the OCP (see text, and also

compare with table 2 in ref 3)

T

L MC/MC MHNC /MHNC HNC/MC MSA/MSA HNC/HNC
1 . 0.81 0.81 0.87 0.44 0.86

| .
10 | -1.66 -1.86 -0.81 -1.40 -1.21

i

i
20 L -4.56 -4.81 -2.75 -3.88 -3.81

3
30 -7.48 -7.33 -4.70 -7.20
70 -19.28 -19.53 -12.59 -17.33

|

Figure caption

Figure 1 : The bulk bridge function parameter n as a function of
F-1/2[1+B(6P/dp%_] -BP(P for different potentials.The data is taken from
references [1,13,14]. The Lennard -Jones results include data for both

T>T and T<T, .
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